首页 > 范文 > 高一数学建模报告范文(实用45篇)

高一数学建模报告范文(实用45篇)

小车 收藏 投稿 点赞 分享
高一数学建模报告范文(实用45篇)

微信扫码分享

高一数学建模报告范文 第1篇

第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。 这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。

第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。

第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。

高一数学建模报告范文 第2篇

1.教师要具备数学建模思想意识

在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。

2.实现数学建模思想和高等数学教材的互相结合

3.理清高等数学名词的概念

高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学

教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。

4.加强数学应用问题的培养

高等数学中,主要有以下几种应用问题:

(1)最值问题

在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。

(2)微分方程

在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。

(3)定积分

微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。

高一数学建模报告范文 第3篇

分析所得的方程系统,在MATLAB特别是在其组件Simulink中建立一个数学工程的系统动力学模型。图2表示的是一个由柯西的正常形式的方程得到的一个系统动态模型。该模型是通用的,可用于参数不同的确定质量和尺寸的机械臂的机器人的研究。建模的目的是确定其发生过程的动作速度和性质,确认机械臂关节耦合(在同步运动)及速度和转速的行为。

在建模过程中已经使用下列参数:重量负载-,一个夹持器的延伸速度-,绕垂直轴旋转的速度-,其余参数在建模过程中进行计算。

根据对模型的研究结果显示,进行定性评估。

建模:

对旋转模块;

对机械臂的扩展模块。

瞬态过冲:

静态误差值:

过渡过程中的上升时间:

得到的定性评估结果相当接近于具有适当质量和尺寸和参数的双连杆机器人的试验评估。评估结果表明,该模型在评估有另一个处理重量和力-速度特性的类似机器人动态参数时十分有效。

高一数学建模报告范文 第4篇

数学建模是数学应用与实践的重要载体;数学教学旨在传授数学知识与数学思想,激发学生应用数学解决实际问题的意识。数学建模与数学教学相辅相成,数学建模思想与数学教学将有助于提高教学效果,反之传统应试扼杀了学生学习数学的兴趣与主观能动性;数学教学效果,在数学建模过程中体现显著。

三、数学教学

1.数学教学“教”什么。电子科技大学的黄廷祝老师说:“数学教学,最重要的就是数学的精神、思想和方法,而数学知识是第二位的。”因此数学教师不仅要传授数学知识,更要让学生知道数学的来龙去脉,领会数学精神实质。

2.如何提高数学教学效果。提高数学教师自身素质是关键,创新数学教学模式是手段,革新评价机制是保障。

①提高数学教师自身素质。

数学教师自身素质是提高数学教学效果的关键。20xx年胡书记在《xxx关于加强教师队伍建设的意见》中明确提出,我国教育出了问题,问题关键在教师队伍。数学学科特点鲜明。若数学教师数学素养与综合能力不强,则提高数学教学效果将无从谈起。因此数学教师需通过如参加培训、学习精品课程、同行评教、与专家探讨等途径努力提高自身素养。

②创新数学教学模式。

教师的专业发展是学校可持续发展的关键,是学校核心竞争力的最集中体现。近年来,我校的教育教学质量和社会声誉获得快速提升,与我校重视教师队伍建设,特别是重视教师的专业成长密不可分。实践证明,促进教师专业化发展,不但要有学校制度上的支持,更离不开教师自身对教育教学工作不断地进行思考与研究,总结与反思,通过撰写论文进行理论提升。

目前,我校已经有一大批教师,他们不但有工作上的热度,更有对教育教学认识上的高度和对所教学科理解上的深度。他们在紧张纷繁的日常工作之余,笔耕不辍,将自己的研究与思考写成论文。当中有许多已经在专业学术刊物上公开发表或者在不同级别的论文评比中获奖。

这不单是老师们实践工作及对其进行总结、反思的过程记录,更是他们教育教学智慧的结晶,是学校的一笔宝贵财富。为了珍惜这笔财富,加强优秀论文成果的交流与推广,让更多人得惠于此;同时,也为了感谢他们的辛勤付出,营造更加浓厚的教研氛围,鼓励更多老师积极地、深入地开展教育教学研究,让更多人养成总结与反思的习惯,更好地促进教师专业水平提升,真正推动学校内涵发展,我们在成功编印《教苑笔耕集》第

一、二卷之后,在深入推进“高效课堂”教改实验、积极向省级标准化高中迈进的征途中,从老师们已经公开发表或者获奖的论文中,拾取一部分编印成《扶风县第二高级中学优秀教研成果汇编——教苑笔耕集》第三卷。

本卷分为七大板块,以教研组为单位收集了学科论文和德育论文,共57篇,约15万字。由于时间仓促,加之篇幅有限,还有许多老师的众多优秀论文未及收录,是为憾!

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说xxx,数学建模xxx包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指xxx对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成xxx[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的xxx满堂灌xxx,也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

高一数学建模报告范文 第5篇

表述:准确、简明、条理清晰、合乎语法。

字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表

简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论2016年数学建模论文格式要求2016年数学建模论文格式要求。还可作那些推广。

1、建模准备及问题重述:

了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。

在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。

2、模型假设、符号说明

基本假设的合理性很重要

(1)根据题目条件作假设;

(2)根据题目要求作假设;

(3)基本的、关键性假设不能缺;

(4)符号使用要简洁、通用。

3、模型的建立

(1)基本模型

1)首先要有数学模型:数学公式、方案等

2)基本模型:要求完整、正确、简明,粗糙一点没有关系

(2)深化模型

1)要明确说明:深化的思想,依据,如弥补了基本模型的不足……

2)深化后的模型,尽可能完整给出

3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。

能用初等方法解决的、就不用高级方法;

能用简单方法解决的,就不用复杂方法;

能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。

4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在

建模中:模型本身,简化的好方法、好策略等;

模型求解中;

结果表示、分析,模型检验;

推广部分。

5)在问题分析推导过程中,需要注意的:

分析要:中肯、确切;

术语要:专业、内行;

原理、依据要:正确、明确;

表述要:简明,关键步骤要列出;

忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。

4、模型求解

(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密;

(2)需要说明计算方法或算法的原理、思想、依据、步骤

若采用现有软件,要说明采用此软件的理由,软件名称;

(3)计算过程,中间结果可要可不要的,不要列出2016年数学建模论文格式要求论文。

(4)设法算出合理的数值结果。

5、模型检验、结果分析

(1)最终数值结果的正确性或合理性是第一位的;

(2)对数值结果或模拟结果进行必要的检验。当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进;

(3)题目中要求回答的问题,数值结果,结论等,须一一列出;

(4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据;

(5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页)

数值结果表示:精心设计表格;可能的话,用图形图表形式。

20XX年,是我矿实现原煤生产大跨越的一年,是全矿干群诚信服从求进取,忠诚敬业创佳绩的一年,一年来,矿思想政治工作研究会充分发挥思想政治工作优势,大力开展形式多样的思想政治工作研究活动,把思想政治工作溶入到了企业的安全生产、经营管理等各项工作之中,为我矿健康持续稳定发展提供了强大的发展动力,10月份矿党委政研会结合我矿新时期工作的特点,精心选编了二十个思想政治工作调研课题,在全矿干部中开展征集活动,截止11月30日共收到调研论文94篇,经过政研会认真评选,评出优秀论文30篇。为表彰先进,激励后进,不断开创政研工作新局面,矿党委决定对范书友等30名获得优秀论文的同志进行公开表彰,名单如下:

一等奖5人:范书友、史宗智、李治民、刘步一、李现志

二等奖10人:刘会钊、梅红仁、周振乾、陈焕琴、刘建国

马金才、马志军、王峰、魏新刚、韦大鹏

三等奖15人:杨西勋、赵春兰、xxx旦、王世民范心顺

裴建子、严献仓、张毅、上官建民、贾年松

范秀英、郅玲玲、江茂东、范三流、刘建停

为切实推进我矿政治研究工作再上新台阶,矿党委希望受到表彰的同志要珍惜荣誉,戒骄戒躁,真心实意,真抓实干,按照我矿政研会要求,认真做好明年的思想政治工作,把取得的成绩当作新的起点,把获取荣誉当作前进的动力,扎扎实实地做好各项工作。矿党委号召,基层支部、机关各科室,要以先进为榜样,紧紧围绕2016年xxx以严治矿,科学决策,综合管理,全面提高xxx的工作思路,为实现全年原煤生产110万吨,奋斗目标130万吨,创水平目标140万吨的整体工作布置,在全矿兴起xxx赶先进,创佳绩xxx的热潮,为我矿物质文明、精神文明和政治文明健康协调发展做出新的更大的贡献。

高一数学建模报告范文 第6篇

有助于调动学生学习的兴趣

在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。

有助于培养学生的创新能力

和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。

高一数学建模报告范文 第7篇

【摘 要】首先阐述数学建模内涵;其次分析数学建模与数学教学的关系;最后总结出提高数学教学效果的几点思考。

【关键词】数学建模;数学教学;教学模式

什么是数学建模,为什么要把数学建模的思想运用到数学课堂教学中去?经过反复阅读有关数学建模与数学教学的文章,仔细研修数十个高校的`数学建模精品课程,数学建模优秀教学案例等,笔者对数学教学与数学建模进行初步探索,形成一定认识。

一、数学建模

数学建模即运用数学知识与数学思想,通过对实际问题数学化,建立数学模型,并运用计算机计算出结果,对实际问题给出合理解决方案、建议等。系统的谈数学建模需从以下三个方面谈起。

1.数学建模课程。

“数学建模”课程特色鲜明,以综合门类为基础,重实践,重应用。旨在使学生打好数学基础,增强应用数学意识,提高实践能力,建立数学模型解决实际问题。注重培养学生参与现代科研活动主动性与参与工程技术开发兴趣,注重培养学生创新思维及创新能力等相关素质。

2.数学建模竞赛。

1985年,美国工业与应用数学学会发起的一项大学生竞赛活动名为“数学建模竞赛”。旨在提高学生学习数学主动性,提高学生运用计算机技术与数学知识和数学思想解决实际问题综合能力。学生参与这项活动可以拓宽知识面,培养自己团队意识与创新精神。同时这项活动推动了数学教师与数学教学专家对数学体系、教学方式与教学知识重新认识。1992年,教育部高教司和中国工业与数学学会创办了“全国大学生数学建模竞赛”。截止2012年10月已举办有21届。大力推进了我国高校数学教学改革进程。

3.数学建模与创新教育。

创新教育是现代教育思想的灵魂。数学建模竞赛是实现数学教育创新的重要载体。如2012年A题,葡萄酒的评价中,要求学生对葡萄酒原料与酿造、储存于葡萄酒色泽、口味等有全面认识;而2012年D题,机器人行走避障问题,要求学生了解对机器人行走特点;2008年B题,乘公交看奥运,要求学生了解公交换乘系统。大学生数学建模竞赛试题涉及不是单一数学知识。因此数学教师在数学教学中必须融合其它学科知识。同时学生参与数学建模竞赛有助于增强其积极思考应用数学知识创造性解决实际问题的意识。

二、数学建模与数学教学的关系

数学建模是数学应用与实践的重要载体;数学教学旨在传授数学知识与数学思想,激发学生应用数学解决实际问题的意识。数学建模与数学教学相辅相成,数学建模思想与数学教学将有助于提高教学效果,反之传统应试扼杀了学生学习数学的兴趣与主观能动性;数学教学效果,在数学建模过程中体现显著。

三、数学教学

1.数学教学“教”什么。电子科技大学的黄廷祝老师说:“数学教学,最重要的就是数学的精神、思想和方法,而数学知识是第二位的。”因此数学教师不仅要传授数学知识,更要让学生知道数学的来龙去脉,领会数学精神实质。

2.如何提高数学教学效果。提高数学教师自身素质是关键,创新数学教学模式是手段,革新评价机制是保障。

①提高数学教师自身素质。

数学教师自身素质是提高数学教学效果的关键。

②创新数学教学模式 。

高一数学建模报告范文 第8篇

(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。

(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。

(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。

高一数学建模报告范文 第9篇

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。

数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。

因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。

一般来说“,数学建模”包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。

如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。

数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。

因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指“对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成”[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。

而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。

同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。

经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。

要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。

案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。

其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。

还要强调如何用求解结果去解释实际现象即检验模型。

另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。

最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的“满堂灌”,也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。

每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。

如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。

学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。

这种针对性的数模教学,会极大地提高教学效率。

高一数学建模报告范文 第10篇

数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。

高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段――高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。

高一数学建模报告范文 第11篇

由于MATLAB软件具有很强的数据处理和数据可视化功能,同时具备有操作方便的特点,所以当把MATLAB软件运用在数学建模里时,必将提高数学建模的质量和效率,并能起到事倍功半的效果,下面以2014年高教杯全国大学生数学竞赛A题为例来说明MATLAB软件在数学建模里的重要作用。

2014年高教杯全国大学生数学竞赛题目A题是嫦娥三号软着陆轨道设计与优化问题,嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车,嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略问题。在卫星着路的过程中,不考虑主减速段,完全由姿态调整发动机控制水平运动的阶段为粗避障和精避障段,为了节省燃料,应尽量减少卫星在空中的悬停时间。题目中附件三、附件四分别是距月球表面2400米和100米的高程图,根据高程图中的数据信息,我们可以确定最佳的降落位置。我们可以运用MATLAB软件对于高程图的进行处理,首先用MATLAB软件软件中imread命令将其转化为矩阵形式,然后分别做出月球表面立体的三维图和等高线二维平面图,建立数值地形的不同区域,我们可以通过三维图很直观的观察到月球表面具体地形、地貌,通过等高线二维图形,我们可以清楚地看到月球表面地势高低变化成度,从而确定卫星降落地最佳地点。本文只以100米高程图作为例子演示,具体地操作程序以及输出结果如下:

g=imread(‘附件4距100m处的高程图.tif’);

%用imread函数读取图片信息,注意路径要以电脑中图片的实际路径为准

gg=double(g);

%将图片中的信息转化为数值矩阵信息以便以MATLAB软件进行后期处理

gg=gg-1/255;

%将彩色值转为0-1的渐变值以便于观察

[x,y]=size(gg);

%取原图大小

[X,Y]=meshgrid(1:y,1:x);

高一数学建模报告范文 第12篇

物流需求预测,就是利用所能涉及到的历史资料和市场信息,利用一定的经验判断、技术方法和预测模型,对未来的物流需求状况进行科学的分析、估算和推断。物流需求预测的目的主要是确定物流服务供应系统所需的能力,同时为其建设规模提供数据方面的依据。

物流需求预测的意义在于指导和调节人们的物流管理活动,从而能够采取适当的策略和措施,以谋求最大的利益。其作用主要体现在:

(一)物流需求预测是是物流管理的必要环节

对物流发展中的各个因素实施控制是物流企业进行规划和经营的前提,而这种控制需要依靠预测来未完成。因此,物流需求预测是物流管理的必要环节,一切的管理活动必须从对信息的分析和预测开始。

(二)物流需求预测能够改善物流管理

物流管理活动中,若能预测了解和把握市场需求的未来变化,那么相关企业就能够采取有效的战略。可以说,物流需求预测是物流管理的重要手段。

(三)物流需求预测能够为物流发展规划和管理经营决策提供重要的科学依据

物流需求预测可以描绘出市场需求的变动趋势,从而推测出物流发展需求的趋势,并进行比较系统的全面的分析和预见,以避免决策的片面性的局限性。

高一数学建模报告范文 第13篇

一、只考虑对成品油价影响较大的五个因素,即:原油价格、企业成本、供

求关系、承受能力、社会公平。对于每一个因素,如果其受其他因素的影响,则对该因素单独进行分析。本模型我们假设只有社会公平受地域分布、收入水平、当地物价影响。

二、假设影响成品油定价的五个因素之间没有影响,各自独立,且影响社会

公平的三个因素也是独立的,不会对其他因素造成影响。

三、假设石油资源稀缺程度和环境因素及能源效率不影响成品油定价,或者

说其影响的力度较小,忽略掉其影响。

Ⅳ、符号说明

Ⅴ、模型的建立及求解

模型一:

基于模糊综合评价模型(FCE)的我国现行成品油定价机制评价及验证模型

模糊综合评价算法概述

模糊综合评价是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。隶属度与隶属度矩阵是模糊综合评价的关键性概念。对于论域(即研究范围)U中任意元素x,都有A(x)∈

[0,1]与之相对应,则称A为U上的模糊集,而A(x)即称为x对A(A通常称之为评价集)的隶属度。隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。隶属度矩阵则为多个元素xi对于Ai的模糊关系矩阵,矩阵元素r即为x对于A的隶属度。模糊综合评级中通常分有目ijij

标层和指标层,通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵)可以得到对于目标层对于评价集的隶属度向量,从而得到目标层的综合评价结果。

模糊综合评价模型求解

基于我国现行成品油定价机制的模型分析

我国现行成品油定价机制的提出设计多方面因素,可以采用原油价格、企业成本、供求关系、承受能力、社会公平这五个指标来进行衡量。将这五个指标定为一级指标。而这五个指标无法定量的给出对我国现行成品油定价机制衡量的实际标准,而且它们之间的相关关系和所反应结果的准确度都是模糊不清的。在社

会公平这一指标下,又有地域分布、收入水平、当地物价这三个二级指标。它们对于成品油定价的定义,评价能力和它们之间的相互关系也是模糊不清的。综上所述,面对我国现行成品油定价机制的问题采用模糊综合评价方法来衡量是较为恰当的。

为此需要建立一个影响力评价等级集合V={V}来对成品油价格标准进行等i

级评价,并且构造出单指标因素对于各评价等级的隶属函数F(x),建立模糊关系矩阵R,同时需进行相应的基本操作,对各指标进行权重衡量,结合隶属度矩阵求出综合评价矩阵。

在计算各级指标权重方面,考虑到了传统的模糊综合评价中的权重通常由专家指定或者根据调查结果判定,这样导致主观因素太大,权重定量不够精确。为避免这些不利因素,在这个模型中采用层次分析法求出各指标权重大小。

模型假设

1)忽略竞争程度、资源稀缺以及能源效率和环保节能等因素对于模型的影响。

2)假设企业成本、企业成本、供求关系、承受能力、社会公平等因素在原油价格波动时一个原油价格的上涨或者下降过程中这段时间内保持不变。

3)假设现行成品油定价机制得到了良好的实施,国内成品油价格基本上与机制定义的价格相符。

指标的层次划分

U??u1,u2,u3,u4,u5?

建立具有准则层和子准则层这两层的模糊综合评价分析模型。

指标层次表(表1)

数学建模论文范文篇二:数学建模优秀论文模板(经典中的经典)

承诺书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

高一数学建模报告范文 第14篇

摘要:数学建模即为解决现实生活中的实际问题而建立的数学模型,它是数学与现实世界的纽带。结合教学案例,利用认知心理学知识,提出促进学生建立良好数学认知结构以及数学学习观的原则和方法,帮助学生由知识型向能力型转变,推进素质教育发展。

关键词:认知心理学;思想;数学建模;认知结构;学习观

认知心理学(CognitivePsychology)兴起于20世纪60年代,是以信息加工理论为核心,研究人的心智活动为机制的心理学,又被称为信息加工心理学。它是认知科学和心理学的一个重要分支,它对一切认知或认知过程进行研究,包括感知觉、注意、记忆、思维和言语等[1]。当代认知心理学主要用来探究新知识的识记、保持、再认或再现的信息加工过程中关于学习的认识观。而这一认识观在学习中体现较突出的即为数学建模,它是通过信息加工理论对现实问题运用数学思想加以简化和假设而得到的数学结构。本文通过构建数学模型将“认知心理学”的思想融入现实问题的处理,结合教学案例,并提出建立良好数学认知结构以及数学学习观的原则和方法,进一步证实认知心理学思想在数学建模中的重要性。

一、案例分析

20xx年微软公司在招聘毕业大学生时,给面试人员出了这样一道题:假如有800个形状、大小相同的球,其中有一个球比其他球重,给你一个天平,请问你可以至少用几次就可以保证找出这个较重的球?面试者中不乏名牌大学的本科、硕士甚至博士,可竟无一人能在有限的时间内回答上来。其实,后来他们知道这只是一道小学六年级“找次品”题目的变形。

(一)问题转化,认知策略

我们知道,要从800个球中找到较重的一个球这一问题如果直接运用推理思想应该会很困难,如果我们运用“使复杂问题简单化”这一认知策略,问题就会变得具体可行。于是,提出如下分解问题。问题1.对3个球进行实验操作[2]。问题2.对5个球进行实验操作。问题3.对9个球进行实验操作。问题4.对4、6、7、8个球进行实验操作。问题5.如何得到最佳分配方法。

(二)模型分析,优化策略

通过问题1和问题2,我们知道从3个球和5个球中找次品,最少并且保证找到次品的分配方法是将球分成3份。但这一结论只是我们对实验操作的感知策略。为了寻找策略,我们设计了问题3,对于9个球的最佳分配方法也是分为3份。因此我们得到结论:在“找次品”过程中,结合天平每次只能比较2份这一特点,重球只可能在天平一端或者第3份中,同时,为了保证最少找到,9个球均分3份是最好的方法。能被3除尽的球我们得到均分这一优化策略,对于不能均分的球怎么分配?于是我们设计了问题4,通过问题4我们得到结论:找次品时,尽量均分为3份,若不能均分要求每份尽量一样,可以多1个或少1个。通过问题解决,我们建立新的认知结构:2~3个球,1次;3+1~32个球,2次;32+1~33个球,3次;……

(三)模型转化,归纳策略

通过将新的认知结构运用到生活实践,我们知道800在36~37之间,所以我们得到800个球若要保证最少分配次数是7次。在认知心理学中,信息的具体表征和加工过程即为编码。编码并不被人们所觉察,它往往以“刺激”的形式表现为知觉以及思想。在信息加工过程中,固有的知识经验、严密的逻辑思维能力以及抽象概况能力将为数学建模中能力的提高产生重要的意义。

二、数学建模中认知心理学思想融入

知识结构和认知结构是认知心理学的两个基本概念[3]。数学是人类在认识社会实践中积累的经验成果,它起源于现实生活,以数字化的形式呈现并用来解决现实问题。它要求人们具有严密的逻辑思维以及空间思维能力,并通过感知、记忆、理解数形关系的过程中形成一种认知模型或者思维模式。这种认知模型通常以“图式”的形式存在于客体的头脑,并且可以根据需要随时提取支配。

(一)我国数学建模的现状

《课程标准(20xx年版)》将模型思想这一核心概念的引入成为数学学习的主要方向。其实,数学建模方面的文章最早出自1982年张景中教授论文“洗衣服的数学”以及“垒砖问题”。虽然数学建模思想遍布国内外,但是真正将数学建模融入教学,从生活事件中抽取数学素材却很难。数学建模思想注重知识应用,通过提取已有“图式”→加工信息→形成新的认知结构的方式内化形成客体自身的“事物结构”,其不仅具有解释、判断、预见功能,而且能够提高学生学习数学的兴趣和应用意识[4]。

(二)结合认知心理学思想,如何形成有效的数学认知结构

知识结构与智力活动相结合,形成有效认知结构。我们知道,数学的知识结构是前人在总结的基础上,通过教学大纲、教材的形式呈现,并通过语言、数字、符号等形式详细记述的。学生在学习时,通过将教材中的知识简约化为特定的语言文字符号的过程叫作客体的认知结构,这一过程中,智力活动起了重要作用。复杂的知识结构体系、内心体验以及有限的信息加工容量让我们不得不针对内外部的有效信息进行筛选。这一过程中,“注意”起到重要作用,我们在进行信息加工时,只有将知识结构与智力活动相结合,增加“有意注意”和“有意后注意”,才能够形成有效的数学认知结构。根据不同构造方式,形成有利认知结构。数学的知识结构遵循循序渐进规律,并具有严密的逻辑性和准确性,它是形成不同认知结构的基础。学生头脑中的认知结构则是通过积累和加工而来,即使数学的知识结构一样,不同的人仍然会形成不同的`认知结构。这一特点取决于客体的智力水平、学习能力。因此若要形成有利认知结构,必须遵循知识发展一般规律,注重知识的连贯性和顺序性,考虑知识的积累,注重逻辑思维能力的提高。

三、认知心理学思想下的数学学习观

学习是学习者已知的、所碰到的信息和他们在学习时所做的之间相互作用的结果[5]。如何将数学知识变为个体的知识,从认知心理学角度分析,即如何将数学的认知结构吸收为个体的认知结构,即建立良好的数学学习观,这一课题成为许多研究者关注的对象。那么怎样学习才能够提高解决数学问题的能力?或者怎样才能构建有效的数学模型,接下来我们将根据认知心理学知识,提出数学学习观的构建原则和方法。

(一)良好数学学习观应该是“双向产生式”的信息

加工过程学习是新旧知识相互作用的结果,是人们在信息加工过程中,通过提取已有“图式”将新输入的信息与头脑中已存储的信息进行有效联系而形成新的认知结构的过程[6]。可是,当客体对于已有“图式”不知如何使用,或者当遇到可以利用“图式”去解决的问题时不知道去提取相应的知识,学习过程便变得僵化、不知变通。譬如,案例中,即使大部分学生都学习了“找次品”这部分内容,却只能用来解决比较明确的教材性问题,对于实际生活问题却很难解决。学习应该是“双向产生式”的信息加工过程,数学的灵活性在这方面得到了较好的体现。学习时应遵循有效记忆策略,将所学知识与该知识有联系的其他知识结合记忆,形成“流动”的知识结构。例如在案例中,求800个球中较重球的最少次数,可以先从简单问题出发,对3个球和5个球进行分析,猜测并验证出一般分配方法。这一过程需要有效提取已有知识经验,通过拟合构造,不仅可以提高学生学习兴趣,而且能够增强知识认识水平和思维能力。

(二)良好数学学习观应该具有层次化、条理化的认知结构

高一数学建模报告范文 第15篇

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

高一数学建模报告范文 第16篇

避免“题海战术”

数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。

强调学生的独立思考

在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生独立思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。

注意恐惧心理的消除

在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的监督作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。

高一数学建模报告范文 第17篇

摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。

关键词:数学建模;教师

一、新课的引入需要发挥教师的作用

教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。

二、在教学任务的设计上需要发挥教师的作用

数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。

三、在新旧知识的联系点上需要发挥教师的作用

建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。

四、在教学重点、难点上需要教师的引导

教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。

高一数学建模报告范文 第18篇

研究人员对机器人动力学有着极大的兴趣。当导出机器人动力学方程的解析形式时可以用拉格朗日或者阿佩尔形式进行描述。在正式说明的情况下,拉格朗日需要对动能和广义力推导出解析表达式,在使用形式化描述阿佩尔的情况下―能量,加速度,和转化的广义力。确定必要的动能,在一般情况下,为了确定质量速度的构成系统和固体角速度矢量实心体的中心刚体的动能在绝对坐标系的变换下是不发生改变的。

这使我们能够获得惯性张量的变换公式之交

一旦将每个环节的动能进行描述解析,找到整个系统的总动能很重要:

找到的每一个链接的动能:

各链接的转动惯量:

让我们假设

经过变换和替换得到

获取拉格朗日方程的每一个环节。区分系统的总动能交替关于。

该操作的结果是,我们得到了各链接下面的等式:

链接1:

链接2:

(1)

结合系统得出方程:

(2)

柯西变换结果系统的一般形式,替代:

(3)

高一数学建模报告范文 第19篇

数学建模论文初中:数学教学中的数学建模能力的培养

一、在高等数学教学中运用数学建模思想的重要性

(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。

(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。

(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。

二、高等数学教学中数学建模能力的培养策略

1.教师要具备数学建模思想意识

在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。

2.实现数学建模思想和高等数学教材的互相结合

3.理清高等数学名词的概念

高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学

教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。

4.加强数学应用问题的培养

高等数学中,主要有以下几种应用问题:

(1)最值问题

在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。

(2)微分方程

在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。

(3)定积分

微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。

三、结语

总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。

高一数学建模报告范文 第20篇

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提。再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣。

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显。基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决。在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范。对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正。

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺。只有不断的学习和总结,才有数学素养的培养和创新能力的提高。

高一数学建模报告范文 第21篇

数学建模比赛论文

优秀高教社杯全国大学生数学建模竞赛题目

(请先阅读“全国大学生数学建模竞赛论文格式规范”)

A题 城市表层土壤重金属污染分析

随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、??、5类区,不同的区域环境受人类活动影响的程度不同。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:

(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?

高一数学建模报告范文 第22篇

[论文关键词]建模地位 建模实践 建模意识

[论文摘要]建模能力的培养,不只是通过实际问题的解决才能得到提高,更主要的是要培养一种建模意识,解题模型的构造也是一条培养建模方法的很好的途径。

一、建模地位

数学是关于客观世界模式和秩序的科学,数、形、关系、可能性、最大值、最小值和数据处理等等,是人类对客观世界进行数学把握的最基本反映。数学方法越来越多地被用于环境科学、自然资源模拟、经济学和社会学,甚至还有心理学和认知科学,其中建模方法尤为突出。数学教育家汉斯·弗赖登塔尔认为:“数学来源于现实,存在于现实,并且应用于现实,数学过程应该是帮助学生把现实问题转化为数学问题的过程。”《新课程标准》中强调:“数学教学是数学活动,教师要紧密联系学生的生活环境,要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”

因此,不管从社会发展要求还是从新课标要求来看,培养学生的建构意识和建模方法成了高中数学教学中极其重要内容之一。在新课标理念指导下,同时结合自己多年的教学实践,我认为:培养建模能力,不能简单地说是培养将实际问题转化为数学问题的能力,课堂教学中更重要的是要培养学生的建模意识。以下我就从一堂习题课的片段加以说明我的观点及认识。

二、建模实践

片段、用模型构造法解计数问题(计数原理习题课)。

计数问题情景多样,一般无特定的模式和规律可循,对思维能力和分析能力要求较高,如能抓住问题的条件和结构,利用适当的模型将问题转化为常规问题进行求解,则能使之更方便地获得解决,从而也能培养学生建模意识。

例1:从集合{1,2,3,…,20}中任选取3个不同的数,使这3个数成等差数列,这样的等差数列可以有多少个?

解:设a,b,c∈N,且a,b,c成等差数列,则a+c=2b,即a+c是偶数,因此从1到20这20个数字中任选出3个数成等差数列,则第1个数与第3个数必同为偶数或同为奇数,而1到20这20个数字中有10个偶数,10个奇数。当第1和第3个数选定后,中间数被唯一确定,因此,选法只有两类:

(1)第1和第3个数都是偶数,有几种选法;(2)第1和第3个数都是奇数,有几种选法;于是,选出3个数成等差数列的个数为:2=180个。

解后反思:此题直接求解困难较大,通过模型之间转换,将原来求等差数列个数的问题,转化为从10个偶数和10个奇数每次取出两个数且同为偶数或同为奇数的排列数的模型,使问题迎刃而解。

例2:在一块并排10垄的田地中,选择2垄分别种植A,B两种不同的作物,每种作物种植一垄,为了有利于作物生长,要求A,B两种作物的间隔不小于6垄,则不同的选垄方法共有几种(用数字作答)。

解法1:以A,B两种作物间隔的垄数分类,一共可以分成3类:

(1)若A,B之间隔6垄,选垄办法有3种;(2)若A,B之间隔7垄,选垄办法有2种;(3)若A,B之间隔8垄,选垄办法有种;故共有不同的选垄方法3+2+=12种。

解法2:只需在A,B两种作物之间插入“捆绑”成一个整体的6垄田地,就可以满足题意。因此,原问题可以转化为:在一块并排4垄的田地中,选择2垄分别种植A,B两种作物有 种,故共有不同的选垄方法=12种。

解后反思:解法1根据A,B两种作物间隔的垄数进行分类,简单明了,但注意要不重不漏。解法2把6垄田地“捆绑”起来,将原有模型进行重组,使有限制条件的问题变为无限制条件的问题,极大地方便了解题。

三、建模认识

从以上片段可以看到,其实数学建模并不神秘,只要我们老师有建模意识,几乎每章节中都有很好模型素材。

现代心理学的研究表明,对许多学生来说,从抽象到具体的转化并不比具体到抽象遇到的困难少,学生解数学应用题的最常见的困难是不会将问题提炼成数学问题,即不会建模。在新课标要求下我们怎样才能有效培养学生建模意识呢?我认为我们不仅要认识到新课标下建模的地位和要有建模意识,还应该要认识什么是数学建模及它有哪些基本步骤、类型。以下是对数学建模的一些粗浅认识。

所谓数学建模就是通过建立某个数学模型来解决实际问题的方法。数学模型可以是某个图形,也可以是某个数学公式或方程式、不等式、函数关系式等等。从这个意义上说,以上一堂课就是很好地建模实例。

一般的数学建模问题可能较复杂,但其解题思路是大致相同的,归纳起来,数学建模的一般解题步骤有:

1.问题分析:对所给的实际问题,分析问题中涉及到的对象及其内在关系、结构或性态,郑重分析需要解决的问题是什么,从而明确建模目的。

2.模型假设:对问题中涉及的对象及其结构、性态或关系作必要的简化假设,简化假设的目的是为了用尽可能简单的数学形式建立模型,简化假设必须基本符合实际。

3.模型建立:根据问题分析及模型假设,用一个适当的数学形式来反映实际问题中对象的性态、结构或内在联系。

4.模型求解:对建立的数学模型用数学方法求出其解。

5.把模型的数学解翻译成实际解,根据问题的实际情况或各种实际数据对模型及模型解的合理性、适用性、可靠性进行检验。

从建模方法的角度可以给出高中数学建模的几种重要类型:

1.函数方法建模。当实际问题归纳为要确定某两个量(或若干个量)之间的数量关系时,可通过适当假设,建立这两个量之间的某个函数关系。

2.数列方法建模。现实世界的经济活动中,诸如增长率、降低率、复利、分期付款等与年份有关的实际问题以及资源利用、环境保护等社会生活的热点问题常常就归结为数列问题。即数列模型。

3.枚举方法建模。许多实际问题常常涉及到多种可能性,要求最优解,我们可以把这些可能性一一罗列出来,按照某些标准选择较优者,称之为枚举方法建模,也称穷举方法建模(如我们熟悉的线性规划问题)。

4.图形方法建模。很多实际问题,如果我们能够设法把它“翻译”成某个图形,那么利用图形“语言”常常能直观地得到问题的求解方法,我们称之为图形方法建模,在数学竞赛的图论中经常用到。

从数学建模的定义、类型、步骤、概念可知,其实数学建模并不神秘,有时多题一解也是一种数学建模,只有我们认识到它的重要性,心中有数学建模意识,才能有效地引领学生建立数学建模意识,从而掌握建模方法。

高一数学建模报告范文 第23篇

一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当数学建模论文格式模板以及要求数学建模论文格式模板以及要求。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明数学建模论文格式模板以及要求论文。

(七)数学建模论文模板

1. 论文标题

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

高一数学建模报告范文 第24篇

利用数学知识解决现实生活的具体问题了成为当今数学界普遍关注的内容,利用建立数学模型解决实际问题的数学建模活动也应运而生了。下文是我为大家搜集整理的关于2017数学建模b题优秀论文的内容,欢迎大家阅读参考!

浅谈数学建模实验教学改革

摘要:阐述了数学建模课程在大学生知识面的拓宽、全方位能力的培养以及人文素质的提高三方面的重要作用,提出了数学建模课程有助于提高学生的综合素质。从数学建模理论课程和实验教学两者之间的区别与联系的角度提出了实验教学改革的必要性,最后针对数学建模实验教学的具体情况提出了实验教学改革的 措施 。

关键词:数学建模;实验教学;教学改革

一、数学建模课程有助于提高学生的综合素质

随着 教育 改革的不断深入,我国目前正在开展以“素质和素质教育”为核心的教育思想与教育观念大讨论。在1983年召开的世界大学校长会议中,对理想的大学生综合素质提出了三条标准:专业知识要掌握本学科的 方法 论、具有将本学科知识与实际生活与其他学科相结合的能力以及具有良好的人格素质。[1]

数学是一切科学和技术的基础,数学的思考方式对培养学生科学的思维方法具有重要意义,因而数学的重要性是毋庸置疑的。数学和各学科的相互渗透及其在技术中的应用,推动了数学本身的发展和各个学科理论的发展。戴维在1984年说过:“对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价。显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。”数学的广泛应用性主要取决于数学的 思维方式 。数学对于学生的培养,不只是数学定理的证明,公式、定义的理解,重要的是培养学生具备正确的思想方法,而且可以依据自己所学到的知识不断创新、不断寻找新的途径。

21世纪以来,数学建模课程的开设在国内高校中稳步展开,并获得了广泛认同。参加数学建模竞赛的学校和人数逐年上升,数学建模课程的重要性得到广泛认可,越来越多的高校开设了数学建模课程。[2-4]与传统数学所给的应用题有所不同,数学建模课程着重培养学生的创造性。由于数学建模是从实际问题着手,经过分析、抽象、简化建立数学模型,然后求解、验证并解释实际问题的过程。 社会实践 中的有些实际问题,没有一个明确的已知条件,有时甚至连求解目标也要经过分析问题的各种因素自行确定。这就要求建模者具有较宽的基本知识面,分析问题的能力,具有一定的 想象力 、联想力、洞察力和创新力,具有归纳综合和计算能力等等,即要求具有较好的数学 文化 素质。

1.数学建模课程拓宽了学生的知识面

一方面,数学专业的基础理论教材内容比较成熟,并且侧重定理证明以及演算方法的训练,对问题的实际背景以及模型提取过程介绍不多,而数学建模课程恰好弥补了这一不足。另一方面,由于数学建模问题的实用性和广泛性,大学生在建模实践中要用到很多知识,这些知识已超出了学生的专业知识范围。除了数学知识外,还必须掌握诸如计算方法、计算机语言、应用软件及其他学科的知识等。它是多学科知识的高度综合,宽泛的学科领域和广博的技能技巧是学生所不曾涉猎过的,只能通过学生自学和讨论来进一步掌握。

2.数学建模课程对学生能力的培养是全面的

数学建模的题目多数直接来源于科研、生产、工程与管理的实际问题,且大多是经过适当简化的正在研究或正在探讨阶段中的尚未完全解决的实际问题的部分或片段。解决数学建模问题的过程是对大学生数学与计算机知识、发现及解决问题能力、信息收集能力、论文写作能力及团队协作能力等各方面能力的综合考查。在数学建模实践中,大多数问题既没有唯一的答案,也没有唯一的方法,要解决问题必须要求学生具有独立的思考能力,充分发挥自己的创造能力、想象能力,深刻了解背景,查阅大量资料,并且参加实际调查,根据自身对问题的熟悉程度和知识的掌握来选择思路与方法。通过对所得结果不断地思考和改进,培养和训练学生的科研能力

3.数学建模课程使学生的毅力、意志以及团结合作精神等人文素质方面得到了培养

每年一期的全国大学生数学建模竞赛采取半封闭的形式持续三个昼夜。这是一个非常艰苦的创新过程,不仅培养了大学生刻苦探索的态度、不屈不挠的精神、坚韧不拔的毅力,还培养了学生孜孜不倦、精益求精和锲而不舍的创新精神,并且数学建模竞赛采取三人一个小组,三名同学在竞赛过程_同解决一个竞赛题目。这就需要他们在竞赛的不同阶段团结协作,密切配合,取长补短,合理分工。因此,数学建模可以培养学生的团队意识与协作精神。

二、数学建模的理论课程与实验教学

数学模型是由数字、字母或其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法,它是对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。而创建一个数学模型的全过程称为数学建模,即运用数学的语言、方法去近似地刻画该实际问题,并加以解决的全过程。换句话说,数学建模是从定量化的角度,用数学语言和方法,通过对实际问题抽象、简化建立数学模型,然后通过计算,解决实际问题的过程。[6]数学建模课程与传统的数学教学不同。前者侧重于将数学作为工具,来分析和解决各种实际问题,是以培养学生解决实际问题的能力和应用创新能力为目标的实践性课程。而后者则侧重于公式推导、定理证明等。

数学建模课程包括数学建模理论课程和实验教学。数学建模的实验教学是指学生在教师指导下用计算机和数学软件学习数学,它强调将符号计算、数值计算、数据处理、数学软件和数学建模理论课程相结合的数学课程教学。[5]

数学建模的理论课程和实验教学是相辅相成、不可缺少的,也是互相促进的。首先,数学建模理论课程主要是对实际问题进行分析并得到数学结构模型以及模型结果的解释和应用,而对于模型的求解则很少涉及,相反,实验教学则是借助计算机和数学软件对模型进行求解,充分利用计算机的有利条件,让学生手、眼、脑共用,积极主动地使用数学。其次,数学建模理论课程很少涉及模型的解法,而实验教学则是介绍若干数学方法及相应的软件,以方便地完成模型的求解。最后,数学建模理论课程包含丰富的建模案例,主要对实际问题进行分析以及建立模型等理论过程,而实验教学则通过计算机和软件将所建立的模型进行求解,从而使学生将理论和实践相融合,提高学生运用数学知识解决实际问题的能力。

三、实验教学的改革

教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,开设数学建模课程则是加强后者的一种尝试。

实际问题的解决不仅需要利用数学建模的理论知识,即根据实际问题的内在规律,通过分析做出必要的假设,适当的运用数学工具,得到一个数学结构,更要利用数学建模的实验操作知识将得到的数学结构进行求解(在实际求解中,利用计算机或者软件进行求解),而且求解所得到的结果要能够解释实际问题。因此,实际问题的解决要求数学建模的理论课程内容和实验教学内容配套同步,有机结合。

目前很多高校的数学建模课程共54课时,其中包括课堂理论讲授36课时和实验教学18课时两部分。限于课时和教学进度,现有的实验教学以学生掌握数学软件的基础操作为主要目的,达不到与课程讲授内容的配套同步,学生对于数学软件的学习掌握也存在较多的问题。因此,有必要对数学建模课程的实验教学进行改革。

实验教学改革以问题为引导,采用专题研讨的形式开展,结合台州学校“数学实验在线平台”的建设,学生利用平台掌握基础的数学软件使用方法、命令格式,并且围绕课堂讲授的数学专题模块开展配套的数学建模实验研讨。具体而言,针对不同难易程度的题目类型,实验教学内容分别以三种不同的形式进行。

1.初步的数学软件题目类型

此类题目类型以熟悉掌握数学软件的常用命令格式为目的。例如,绘出某个二元函数的三维曲面图。又如,求一个已知方阵的行列式、逆、特征值以及对应特征向量。再如,求某个具体多项式的根。

这类题目的已知条件比较简单,只需要直接利用软件的某个指令就可以得到所求解的结果,学生在了解相关的软件指令基础上就能独立完成任务。对于这类题目类型,规定学生利用课余时间登录实验平台进行操作,并由授课教师在线评判其正确与否。

2.简单的数学建模题目类型

此类题目类型以提高使用数学软件能力为目的。例如,列出所有的水仙花数(水仙数是一个三位数,其各位数字立方和等于该数本身)。又如,已知某车间生产不同的产品,不同的产品所需要的原料和工时数据,以及不同产品所获得的利润数据。要求在给定原料和工时的条件下,如何安排生产,使得获得的利润最大。再如,给定一片海域一组数据,该数据包括一些离散点的坐标以及在该坐标处的水深,在已知船吃水深度的条件下,求船安全行驶的范围或者容易触礁的范围。

这类题目的已知条件唯一确定,所得到的结果也是唯一的,需要通过简单的编程实现。学生需要对问题进行分析,并具备一定的编程基础才能进行求解并完成规定的任务。对于这类题目类型,授课教师可以利用实验教学的课程时间先进行简单的分析和阐述,然后要求学生利用课余时间独立完成,最后由授课教师进行评判。

3.具有一定综合性质的数学建模题目类型

高一数学建模报告范文 第25篇

论文标题:xxxxxxx

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

高一数学建模报告范文 第26篇

第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。

第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。

第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。

高一数学建模报告范文 第27篇

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支xxx懂实验xxxxxx会试验xxxxxx能创新xxx的教师队伍。由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力。

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程。优先选派数学实验教师定期出去进修深造提高,以便真正形成一支xxx懂实验xxxxxx会实验xxxxxx能创新xxx的教师队伍。实验课的地位要给予应有的重视。我院现存的一个重要表现就是实验设备不足,实验室开放时间不够。为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室。

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备。精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神。在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计。要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则。

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解。熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化创新思维的开发。

教学方法上实行启发参与式教学法:启发—参与—诱导—提高。充分发挥学生主体作用,以学生亲自动脑动手为主。

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高。数学实验是一门强调实践、强调应用的课程。

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程。在这一教学活动中,通过数学软件如MAT—LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程。

高一数学建模报告范文 第28篇

xxx数学建模xxx已经越来越被广大教师所接受和采用,所谓的xxx数学建模xxx思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为xxx数学建模xxx,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

高一数学建模报告范文 第29篇

提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。

教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。

高一数学建模报告范文 第30篇

【摘 要】文章阐述了我们应用数学的发展现状,分析了应用数学建模的意义,提出在应用数学中渗透建模思想的措施,以期能够对当前应用数学建模思想的发展提供参考。

【关键词】应用数学; 数学建模;建模思想

将建模的思想有效的渗透到应用数学的教学过程中去,是我们当前开展应用数学教育的未来发展趋势,怎样才能够使应用数学更好的服务社会经济的发展,充分发挥数学工具在实际问题解决中的重要作用,是我们当前进行应用数学研究的核心问题,而建模思想在应用数学中的运用则能够很好的解决这一问题。

1 当前应用数学的发展现状以及未来发展趋势

数学教育至少应该涵盖纯粹数学和应用数学两方面内容,目前我国数学教育内容以纯粹数学为主,极少包括应用数学内容,这割裂了数学与外部世界的血肉联系,使数学变成了多数学生眼中的抽象、枯燥、无用的思维游戏,而厌学成风。因此,大家对现行的数学教育不满意,期望改革,期望找到方法激发学生的学习兴趣、培养学生利用数学解决各种实际问题的能力。在不改变传统的教学体系的前提下,有机地融入应用数学内容,应是解决现存问题的有效方法。事实上,数学发展的根本原动力,它的最初的根源,是来自客观实际的需要,数学教学中理应突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系。伴随着社会生产力的不断发展,多个学科交叉发展,使得应用数学逐渐发展成拥有众多发展方向的学科,应用数学所运用的领域不断延伸,已经不再局限于传统的、而是想着更为宽阔的、新兴的学科以及高新技术领域发展,应用数学目前已经渗透到社会经济发展的各个行业,在这一大背景下,应用数学的研究者就拥有了极大的发展空间以及展示才能的舞台,也迎来了应用数学发展的新机遇。

2 开展数学建模的意义

3 渗透建模思想的对策措施

3. 1充分重视建模的桥梁作用

建模是实现数学知识与现实问题相联系的桥梁与纽带,通过进行建模能够有效的将实际问题进行简化。在这一转化的过程中,应当深入实际进行调查、收集相关数据信息,认真分析对象的独特特征及规律,构建起反映实际问题的数学关系,运用数学理论进行问题的解决。这正是各个学科之间进行有效联系的结合点,通过引进建模思想,不仅能够使我们有效掌握数学理论之外的实践问题,还能够推动创新意识的提升,因此,我们应当充分重视建模的作用。

3. 2将建模的方法以及相关理论引入到数学教学中来

我国当前数学课程教学体系的现状包括高等数学、线性代数、概率论与数理统计等几个部分。当前应用数学的发展,满足这一学科的建设以及其他学科对这一学科的需要,教师在教学中应当将问题的背景介绍清楚,并列出几种解决方案,启发学生进行讨论并构建数学模型。学生们在课堂上就能够获得更多的思考和讨论的机会,能够充分调动学生们的积极性,使其能够立足实际进行思考,这样一来就形成了以实际问题为基础的数学建模教学特色。

3. 3积极参加“数学模型”课等相关课程与活动

数学应用综合性的实验,要求我们掌握数学知识的综合性运用,做法是老师先讲一些数学建模的一些应用实例,然后学生上机实践,强调学生的动手实践。“数学实验” 课应该说是数学模型的辅助课程,主要培养我们的数学思维和创新能力,还应当组织一些建模比赛,不断提升数学建模的综合水平。

上述几个部分的论述与分析,我们看到,在应用数学中加强建模思想具有非常重要的意义,不仅需要在课堂学习过程中认真掌握数学理论知识,还应当深入了解数学理论在实际生活中的可用之处,尽可能的使应用数学与自身所学专业相联系,这样,才能够使应用数学的能力与水平在日常实践过程中得到提升。就当前高等数学的现状来看,加强创新意识以及将实际问题转化为数学问题能力的培养,提升综合运用本专业知识以来解决实践问题的能力,使创新思维得到最大限度的发挥。

高一数学建模报告范文 第31篇

总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水平。

逻辑学的发展在于应用,它的生命也在于应用。逻辑学和知识组织是紧密相连的。知识组织是一门对知识元素的本质内容和知识元素之间的关联进行揭示和序化活动的科学。这个序化过程是依据知识内容的内在模式和规律性,应用知识逻辑和知识处理方法来实现的。无论哪种知识组织方法都离不开逻辑学的指导。讨论知识组织中的逻辑学应用问题的意义在于,知识组织将以逻辑学为重要理论基础,向着更高、更深层次发展。逻辑学为知识组织发展指明了方向,同时也为其发展的正确性提供了保障。在逻辑学的指导下,知识组织的每一过程,包括知识获取、知识表示、知识重组、知识存储都将得到不断完善、创新,最终为人类认识世界、改造世界创造条件。

如何成为优秀的文员呢?要出色的完成一份工作,是需要一套标准来衡量的,文员也有自己的工作标准,下面我们来具体看看成为一个出色的文员的标准::一:良好的文字处理能力,字迹清晰,书写工整.

二:良好的语言表达能力[比如得体的应对电话访问]

三:善于与人交流,这有助于建立两好是人际关系.

四:应变能力强,因为文员经常需要陪同领导,出席会议,接待来客.

五:能严格保守机密,谨慎处理保密文件.

六:善解人意,能准确领会领导的意图.

七:能沉着处理紧急事故,因为领导不可能随时在你旁边.

八:能代表领导出席某些会议并讲话,准确,恰当的传达领导的意见.

九:及时将公司内部,外部信息传达给上司.

十:维护好办公环境,清洁办公场地.

十一:有良好的职业道德和强烈的进取心.

十二:保持充沛的精力,具有一定的活力.

十三:良好的安排时间能力[如出差时间等]

十四:记忆能力好,尤其对人名,电话号码...反应迅速.

十五:有组织能力和团队精神.

十六:协调自己一上司,同事与上司之间的关系.

十七:协助上司具体工作项目的细节准备,材料整理.

十八:积极主动的工作态度.

十九:熟悉公司的所有部门.

二十:谦虚谨慎,知错就改,宽容大度.

二十一:在适当的时候给上司提出意见,建议.

二十二:熟练的管理文件,资料,文档,[归档,保存,查找,备份]

二十三:会多种语言,能快速适应各种文化环境.

二十四:掌握必要的电脑知识.

二十五:尊重领导和同事.热情,大方.文员是公司的基层职员,一般从事文件处理工作,也有许多的公司从薪金上划分员

工/文员/职员的级别,但有些公司对文员的要求很高,也赋予一些权力。也有可能

是踏入管理阶层的第一步。

办公室文员的工作内容

办公室文员(会议、文书、印信、档案、接待、宣传栏、文件报纸收发)工作职责:

1. 接听、转接电话;接待来访人员。

2. 负责办公室的文秘、信息、机要和保密工作,做好办公室档案收集、整理工作。

3. 负责总经理办公室的清洁卫生。

4. 做好会议纪要。

5. 负责公司公文、信件、邮件、报刊杂志的分送。

6. 负责传真件的收发工作。

7. 负责办公室仓库的保管工作,做好物品出入库的登记。

8. 做好公司宣传专栏的组稿。

9. 按照公司印信管理规定,保管使用公章,并对其负责。

10. 做好公司食堂费用支出、流水帐登记,并对餐费做统计及餐费的收纳、保管。

11. 每月环保报表的邮寄及社保的打表。

12. 管理好员工人事档案材料, 建立、完善员工人事档案的管理,严格借档手续。

13 社会保险的投保、申领。

14 统计每月考勤并交财务做帐,留底。

15 管理办公各种财产,合理使用并提高财产的使用效率,提倡节俭。

16. 接受其他临时工作.

行政文员职位说明书岗位名称行政文员任职人所在部门企管部岗位定员 直接上级

企管部经理主管签字执行日期应具备的条件和要求.一、学历:中专以上文化程度;

二、工作经验:有文件管理工作经验;

三、应具备的知识:

1、文秘知识;

2、文件

管理知识;

3、会做账表;

四、具有强烈的责任心与团队意识;工作内容及方法简述

一、负责公司各类文件及外来文件的收集、发放、存档、借阅工作;

二、负责起草

公司行政会议及其他例会的会议纪要;

三、负责各类文件的拆封、登记、传阅、催

办等工作,做好公司各类档案的接受、整理、保管和统计工作,实行集中统一管理;

四、负责各类文件档案的入库工作并做好统计;

五、负责档案的借阅、复制和利用,

根据需要,编制必要的检索工具和参考资料,注意信息反馈,为公司各部门的档案

查阅提供方便,认真做好使用记录;

六、及时收集各类档案,做好平时的立卷工作,

并做好整理、修复、装订、编目和归档工作;

七、负责归档文件的验收、鉴定,做

到归档文件完整、签署齐全、装订整齐、分类科学、使用方便;

八、负责定期清查

档案,及时催讨借出的档案,做到账物相符;

九、每天做好档案室的清洁工作和温

湿度记录,落实防盗、防火、防尘等安全措施,对损坏或变质的档案,及时进行修

补和复制;

十、完成部门经理临时交办的相关任务。责任

一、对文件数据的准确性

负责;

二、对所保管的文件安全保密负责;对工作程序的执行效果负责。权利有权

拒绝不符合公司要求的部门或人员查阅文件 ……

行政前台文员工作职责

1、接待工作:访客进入接待厅,应抬头行注目礼“您好,请问找谁?”,并请访客入坐,

请示后引入相关区域,在一分钟内端上茶水,并负责加水、更新烟缸;

2、卫生清洁工作:烟缸不得超过五个烟蒂,访客离去后,三分钟内清洗好烟缸、

茶杯;

3、总机服务工作:铃响三声内必须接听,“您好,„XX公司„。”;若自动转拨,三

分钟内必须转为人工;来电找“总经理”,判定是广告类,不应直接转入,应问清何

事后转接相关部门;

4、传真信息必须在五分钟内送达相关人员;

5、负责收发管理报纸、信函;

6、安全工作:下班前检查复印机关机,关闭所有电源,负责关好门窗;

7、接受行政助理安排的其它工作。

人事文员的工作就是协助主任做好日常管理工作。树立为领导服务、其它部门服务

的思想。

办公室文员(会议、文书、印信、档案、接待、宣传栏、文件报纸收发)工作职责:

1. 接听、转接电话;接待来访人员。

2. 人员的到职和离职的相关手续的办理。

3. 负责公司员工薪资异动的人事基本资料的提供。

4. 员工调休假、请假、日出勤稽查统计表并及时将其异常状况江报於上级。

5. 负责公司公文、信件、邮件、报刊杂志的分送。

6. 负责传真件的收发工作。

7. 负责办公室仓库的保管工作,做好物品出入库的登记。

8. 做好公司宣传专栏的组稿。

9. 按照公司印信管理规定,保管使用公章,并对其负责。

10. 做好公司食堂费用支出、流水帐登记,并对餐费做统计及餐费的收纳、保管。

11. 每月环保报表的邮寄及社保的打表。

12. 接受其他临时性工作。

13. 管理好员工人事档案材料, 建立、完善员工人事档案的管理,严格借档手续。

14. 社会保险的投保、申领。

15. 统计每月考勤并交财务做帐,留底。

16. 管理办公各种财产,合理使用并提高财产的使用效率,提倡节俭。

1、人事管理工作:招聘、辞退手续,人员培训等。

2、人事事务处理,员工档案编档与管理有序化。

3、办公室工作:文档打印、收发传真,日常考勤。

尊敬的校领导:

你们好!我是08路桥(1)班的朱秋艳,作为一名已有7年团龄的老团员,我积极参加团的活动,正确行使团章规定的权利,模范履行团员义务。因此,我志愿申请泰州职业技术学院系级“优秀团员”称号。请院领导看完我的申报材料后给予批评和鼓励.。

共青团员作为中国xxx的后备军,有着不可替代的作用,作为共青团的一员,我是自豪的.更主要的是我明白我应该在学习上争取名列前茅,在政治上争取先进,在活动中争取积

极.。屈原曾讲“路漫漫其修远兮,吾将上下而求索”,人需要自己不断的挑战自己,超越自己,这样的人生才有意义。因此再进大学初,我就为自己制定了大学生获得短暂计划,以此勉励自己,提醒自己,争取能在大学3年提高自身素质,培养自身的综合学习能力,为自己美好的明天打下坚实的基础。

在我从成为中国共青团团员之时就严格要求自己,步入大学,作为中国社会主义事业的接班人,祖国明天的建设者,这更成为我不断努力进取,不断提高思想觉悟的动力。大一的大一学期,我向学院党总支提交了入党申请书,表明了我入党的决心。在实践过程中,积极履行申请书中给自己体的要求,认真学习“三个代表”,“科学发展观”重要思想和党的路线,方针,决策,不断提高自己的思想觉悟,力求能更好的为同学服务,为社会服务.。

为了能更好的锻炼自己,也为了提高自身的社会实践能力,我积极参加班级,学院组织的集体活动,另外还自愿参加了泰州市的交通协管,成为了一名光荣的志愿者。积极响应青志协的号召,在学校里,我帮助老师整理资料,打扫卫生,成为老师的好帮手。在实践中切实履行作为一个共青团员的光荣义务,能够和其他同学,老师一起学习、工作,我感到自己正在迅速的成长起来。

一个优秀的共青团员应该处处起模范带头作用,学习上更应如此.追求永无止境,学习永无止境,时时刻刻严格要求自己,我深知一个优秀的共青团员要用知识来武装自己.努力,认真,本着实事求是的原则学号每个学科的课程,积极配合老师的工作,加强与老师之间的联系,是班级拥有一个良好的学习氛围.,另外还广泛阅读和自身专业有相关联系的学科书籍,扩大自己的知识面,是自身的综合素质进一步提高.

人海茫茫,大家能相聚在泰职院是一种缘分,因此我格外珍惜这段友谊.在生活上,搞好同学间的关系,互帮互助,互相学习,为生活增添了不少乐趣.在学习之余和好友一起去打球、跑步,一起去做社会调查,这不仅丰富了我们的课余生活,而且慢慢的在活动中使我们明白了团队精神的重要性.

虽然在莘莘学子中,我并非最好,但我拥有不懈奋斗的意念,愈战愈强的精神和忠实肯干的作风,这才是最重要的。追求永无止境,奋斗永无穷期。我要在新的起点、新的层次、以新的姿态、展现新的风貌,书写新的记录,创造新的成绩,我的自信,来自我的能力。在此我提出评选优秀团员的申请,不管我能否选上,我相信:奋斗和追求是我人生的主旋律,我依然执着。“与时间抢跑,向对手致敬”,这是我的座右铭,良好的心态+认真的工作学习态度,相信我会成功,因为我会努力!

申请人:朱秋艳

高一数学建模报告范文 第32篇

分析组成机械臂的两个链接:关于一个广义坐标的垂直轴线旋转链接和沿水平轴偏移的一个广义链路坐标。这些坐标位移决定了机械臂的位置。为了描述机械臂运动学问题必须要解决正、逆运动学问题。

这些任务的解决方案用于机械臂工作区的建设。另外,由此产生的方程组是随后的处理运动任务的起点。解决方案是一组建立机械臂广义坐标与笛卡尔坐标之间联系的非线性函数。图1显示了该机械臂的运动学。

采用Denavit-Hartenberg方法编码运动链。然后建立对机械臂的运动学正问题的绝对和相对坐标形式的约束方程:

-在一般形式上

-与特定的值

因此:

获得机械臂的运动方程:

链接1:

链接2:

获得扩展链路的整体速度:

逆运动学问题是确定一个给定位置和它的输出链路定位(夹具)的机器人的广义坐标[4-5]。有多种方法用于求解逆运动学问题,但大多数是与超越方程系统的解相关。

让我们用三角法来解决这一问题。

从方程组发现后,针对这种划分获得

显然,在第一连杆的旋转角度可以被定义为

For to find the use identity ,thenobtain:,obvious that ,then finally get ,hence.

查找使用的身份,进而获得:,显而易见的是,最终得到了想要的结果,因此。

其结果是,我们得到一个广义坐标方程系统:

随时间变化的变量集,设置唯一标识的机器人连杆的相对位置。因此,机械系统的配置称为广义坐标。在完整力学系统中一些广义坐标的n等于自由度的数目。

高一数学建模报告范文 第33篇

该生有较强的查阅文献资料的能力,能全面搜集有关论题的资料和学术信息,在撰写的过程中能综合运用自身所学的基础知识及专业理论,对论题进行全面的探讨和深入的分析。

该生通过着手分析当前的现实状况,明确了其存在的原因和问题症结点,并提出了一系列有效可行的措施,进而对有关现实问题的解决起到了一定的帮助作用,具有应用价值。

该论文思路清晰、内容充实、观点明确、论据充分、论证严格,整篇论文的逻辑性强,层次清晰,结构合理,文笔流畅,完全符合论文的标准和规范。 该生具有优秀的分析问题和解决问题的能力,对有关问题见解独特,论文研究有一定的深度,并且具有较强的时效性。

该生的综合能力反映了学士学位应具备的优秀水平,其论文达到了本科优秀论文的水准。

高一数学建模报告范文 第34篇

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、抽象思维、逻辑推理和表达能力,提高学生的数学素质和数学能力。在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强。在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力。

而在学生的书面作业或论文报告中,注意培养学生数学语言表达的规范性。书面表达是数学语言表达能力的一种重要形式。通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成。在书面表达上,主要应做到思维清晰、叙述简洁、书写规范。例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范。

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正。

高一数学建模报告范文 第35篇

1.定位于儿童的生活经验

儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。xxx数学建模xxx要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式

小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使xxx数量关系xxx与数学原型xxx一乘两除xxx结合起来,并且使学生利用抽象与类比的思维方法完成了xxx数量关系xxx的xxx意义建模xxx,从而创建了完善的认知体系。

高一数学建模报告范文 第36篇

【内容摘要】数学学科是初中教育体系中的关键课程,具有较强的逻辑思维特点,在新课改背景下对学生提出更高的学习要求,应转变数学知识的认知程度,增强自身的逻辑思维能力。不少初中数学教师为实现这一教学目标,都在积极尝试应用建模教学法,并取得不错的效果。笔者通过对新课改下初中数学建模教学的重点探究和分析,制定一系列有效的教学策略。

【关键词】新课改;初中数学;建模教学

近年来,我国教育新课改不断发展与进步,对初中数学的教学要求也不断提高,研究有效提高初中数学课堂教学的策略至关重要。初中数学教学知识具有抽象化的特点,内容较为枯燥,传统的教师讲解教学内容、学生接受知识灌输的教学模式已不能满足现下初中生学习初中数学的发展需要,必须改进与完善有效的教学策略。数学建模作为数学知识在生活实践的具体应用,在新课改下初中数学课程教学应用建模教学已是大势所趋,是改善教学质量的有效途径。为此,在初中数学建模教学中,教师将人类生产生活中的实际案例转变为数学问题,引领学生通过建立数学模型解决问题,激发他们的学习兴趣,而且在建模过程中可培养学生的实践能力和创新精神,教学效果显著提升。

一、借助数学建模降低知识难度

在初中数学建模教学中,教师需以教学对象的心理特点、认知基础和年龄特点为突破口,先从低起点的数学模型着手,并结合新课改的教学标准适当降低知识难度,让学生易于掌握,促使他们整体参与学习。所以,初中数学教师在具体的建模教学中,选择和使用的素材需贴近学生的实际生活,符合他们的认知能力和学习经验。利用这些生活现象引领学生建立数学模型,对于他们来说较为熟悉更加易于接受与掌握,从而提升教学效率。在这里以“用一次函数解决问题”教学为例,由于学生已经学习过一次函数的概念、性质、图像和特征等知识,知道一次函数的应用十分广泛。教师可结合实际生活中的案例设计题目:某市出租车收费标准:不超过2千米计费为8元,2千米后按元/千米计费,求:车费y(元)与路程x(千米)之间的函数表达式?这对于初中生来说在现实生活中较为熟悉,利用所学知识结合生活案例建立数学模型,并列出函数式:y=8+(x-2)(x≥2)。不过需要注意的是,在现实生活中,两个变量之间的数量关系并不完全遵循同一个标准,应根据自变量不同的取值范围,分别列出不同的函数表达式。

二、初中数学建模突出趣味教学

初中的心理特征与年龄特点决定喜欢接受趣味教学,能够亲手参与实践具有活动性质,且感性思维多于理性思维的教学模式。在初中数学建模教学中,教师需以学生喜闻乐见的方式讲授知识,从他们的兴趣爱好着手,提升课堂教学的趣味性,使其积极参与学习,促进学生建模能力的提高。而且初中数学教材中有不少有趣的现实情境素材,教师可以此为依托展开建模教学,提高学生的学习热情和兴趣,并增强他们解决问题的能力。比如,在学习“解一元一次方程”时,教师为突出建模教学的趣味性,可利用现实生活的行程问题展开教学,借助实例帮助学生学习知识,并练习和掌握一元一次方程的解法。教师可举例:甲、乙两地相距480千米,一辆公共汽车与一辆轿车分别从甲、乙两地同时出发沿公路相向而行,其中公共汽车的平均时速为40千米,轿车的平均时速为80千米,那么它们出发后多少小时在途中相遇?学生阅读完题目之后,利用学习用具进行建模,并模拟动画演示,设两车出发x小时之后相遇,根据题意列出算式:40x+80x=480,从而得出x=4。如此,不仅可让课堂教学突出趣味性,还能够培养学生的建模能力。

三、初中数学建模注重思想方法

四、总结

在初中数学教学活动中引入建模教学,是培养学生学习兴趣和创造性思维能力的有效举措,教师需充分发挥建模教学的优势和作用,让学生知道建模思想的重要性,进而发展他们的思维能力、学习能力和应用能力。

高一数学建模报告范文 第37篇

摘要:高校课程改革要求培养具有适应性和创新性的高素质人才,培养大学生的创造能力和实践能力已经引起了广泛关注。数学建模是提高学生应用意识和数学素质的重要途径之一。学校结合各学科特点及学生情况,开设数学建模课程,改变传统的数学教学方式,在各科教学中穿插数学建模思想,通过课内、课外数学教学的有机结合,培养大学生的数学建模思想,能够使学生应用数学知识解决实际问题的能力增强,有利于提高大学生的创新思维能力和综合素质。

关键词:数学建模;科技创新;实践能力

一、引言

加强大学生的创新精神和创新思维能力的培养,已是世界各国教学改革的共同趋势,也是我国实现“科教兴国”战略的基本要求。新的课程改革强调数学与实际生活的联系,多年来的教育实践证明,数学建模的教学在大学生的创新教学中的地位和意义已是举足轻重。学校可以通过数学建模,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力以及交流与合作的能力。数学教育本质上是一种素质教育,从开始受教育,就接触数学学科,数学的重要性可见一斑,不仅仅是要掌握这门课的知识这么简单,现实生活中的很多实际问题都能用数学语言来描述,把实际问题转化为数学问题,再来描述、解决问题的过程就是建立数学模型、求解数学模型的过程。在数学教学中,就不能和现实完全脱离,这种和现实脱轨的传统教学状态使学生虽然掌握了技术,却不能学以致用,填鸭式的教育并不能使学生真正成为现在社会需要的有用人才,数学建模就是将数学和外界联系起来的一个通道。通过数学建模培养大学生对于新问题在短时间之内的解决问题的能力,有利于培养大学生的创新思想。

二、制约大学生创新能力发展的问题

目前,数学教育主要还是关注在题目上,学习的目的大部分都是为了获取高分。如果高校的教育从公式、定理展开,学生的作业、学习也依葫芦画瓢的积分微分,这种方式训练出来的学生,往往知其然而不知其所以然,虽然按教材中规中矩、按部就班地授课,可以使学生在短时间内掌握知识,也能获得暂时的效果,然而当学生走向社会时,这样学习到的知识往往不能给他们带来更多的帮助,这种情况显然不是在数学教育中理想的状态。书本上看起来或晦涩难懂或明了清楚的概念理论应该不仅仅带给学生在校时的分数、奖学金,应该了解精髓,懂得他们背后的思想和生命力才是数学带给我们远比学习成绩更重要的东西。

无论是以后从事什么岗位,接受过的数学教育锻炼过思维、逻辑,使学生在面对实际问题时更能明白事情的问题所在,更能有逻辑、更有方法的解决问题。这就是要培养学生的自主思考、发散创新的能力。传统的教学过程既然很难做到,那么就要通过别的方法训练大学生面对问题、解决问题的能力。在高校中推广数学建模是一种能实施、易实施又有效的方法。

三、高校大学生数学建模创新活动的建设内容

针对现状问题,我们以培养大学生的创新能力及实践能力为目的,通过建设高效的数学建模创新活动,激发大学生的创新活力和运用数学方法解决复杂实际问题的综合能力,拓宽学生的知识面,培养学生的创新精神和团队合作意识。

1.从全校相关专业中选拔有实战经验的教师进行培训根据不同专业的特色,从全校范围内选拔优秀的数学建模指导教师团队;根据数学建模特点,对指导教师进行专业培训和学术交流。比如,参加数学建模培训班,与其他高校优秀建模教师进行学术交流。邀请有实战经验的专家做数学建模的学术报告。根据指导教师特点进行分工,研究不同领域的数学建模问题,通过专兼结合达到知识结构的优势互补。

2.将数学建模思想融入学生的认知当中现代认知心理学家布鲁纳说:“探索是数学教学的生命线。”Moor教学法提出学习数学最好的方式是“在做数学中学习数学”。因此,在教学中调动学生积极参与数学建模过程中,探索建模方法。在选题时老师应引导学生,开发学生的开放性、探索性,开拓更广阔的探索空间。讲解建模环节,教师要善于把建模材料组织成一个体系,为学生创造探索环境。数学建模环节,教师应尊重学生的主体地位,激励学生独立思考,出错环节协助其自主分析出错原因,并从错误中寻出思维的合理之处。教师引导学生建模主要从两个方面入手:一将实际问题转化为数学问题的能力;二对转化过来的问题,应用数学解决的能力。在教学过程中,教师可以将实际问题还原成所学数学知识,使学生可以借助自己的认知结构主动构建数学模型;从数学问题原型出发,引导学生观察、分析、概括得到数学概念、公式、定理、法则的教学方式符合知识的发生发展的过程,体现教学中解决问题的心理过程。

3.在全校根据文理科专业开设数学建模通识课大一上学期,全校范围内开设数学建模通识课,结合各学科的特点,分别开设文科班和理科班,不仅理科生可以受到数学建模思想的熏陶,文科生也可以根据自身的认知体验到数学建模带来的乐趣。邀请有经验的数学建模指导教师进行讲授,要结合学生感兴趣的问题入手。

比如,20xx年高教社杯全国大学生数学建模竞赛题目B题“拍照赚钱”的任务定价,通过学生感兴趣的“拍照赚钱”等实际问题让学生切身体会到数学建模思想与生活息息相关,让学生带着问题学习。对一些同学难以理解的数学模型的讲解时,教师可以将数学问题转化为学生已有的认知当中,既通俗易懂,又能够让学生通过数学建模产生乐趣。比如,学生在学习难理解的贝叶斯模型时,先验概率对后验概率的影响,不知其意而死记硬背,教学中可以用原型引出贝叶斯模型:已知外界的环境变化影响最终决策者的判断;高等数学中的矩阵,矩阵分解可通过数学建模应用于人脸图像识别、矩阵的特征值及特征向量可以用于数据降维等。通过模型学习概念,强化数学来源于生活的思想教育,理论联系实际的数学课堂教学模式让学生看到问题的提出,有利于学生的创造性思维能力的培养,以此激发学生对数学建模的学习兴趣。学期结束时,要求学生根据教师提供的数学问题提交一份数学建模论文。

4.成立数学建模兴趣小组成立数学建模课外兴趣小组群,通过qq、微信等社交平台,充分发挥大学生的主观能动性,形成良好的学习氛围。学生通过数学建模学习如何在团队中发挥自己的长处,如何合作完成共同的任务。在数学建模课外兴趣小组中,学生互相讨论时,不同的思维碰撞会产生不同的想法,能激励大学生养成勤于动脑、善于思考的能力,能在一定程度上锻炼学生的灵活性和思考问题的多面性。课外小组中,学校举办数学建模系列讲座,可以邀请有经验的专家教师给大家讲解数学在实际中的不同应用,宣传数学建模基本思想,使学生全面理解模型的适用范围、典型特征、建模及求解过程。通过对模型深入的理解,学生了解数学建模全过程,进而举一反三。此外,根据学生的不同特点,分配给学生不同的学习任务,既激起大学生对数学建模的兴趣,又保证个性化的培养教育,学生们在小组中能体会到团队协作的重要性。学校可以开展数学文化节,依托丰富多彩的数学课外阅读活动,使学生感受数学文化,学会用数学的眼光看待世界,用数学的头脑解决身边的问题,以此提升学生的数学素养,重点培养学生的发散思维,以及以新颖独特的方式解决问题的思维方式。

5.参赛人员层级选拔及实训

(1)校内选拔。全校选拔人员采取自愿报名的方式。自愿参加的成员能积极、主动地学习,积极地思考问题,将他们的能力最大限度地发挥出来。指导教师给定几个经典题目,按照全国大学生数学建模竞赛的所有规则进行模拟竞赛,通过赛前鼓励调动学生的创造性思维能力,让学生积极参与。赛中指导教师根据每一位参赛队员的特点进行有针对性的指导,发扬每个学生的优点,提高每一位参赛队员的学业素质及水平。赛后根据每位学生在活动中的表现,评出各个学生的等级奖(一、二、三等奖及优秀奖)。根据成绩及学生在比赛中的表现,选拔出前20组优秀学生团队。

(2)优秀学生培训。学校有针对地对在校内选拔的优秀创新人才进行集中培训和实训,从实际出发,以学校培养创新性人才的目标为指导思想。在数学建模过程中,邀请往届参赛得奖的学生进行交流,介绍经验。教师带领学生观摩其他学校的数学建模培养方式,促进大学生中优秀人才的脱颖而出、健康快速成长,加强各高校之间以及高校与企业之间的研究,让大学生从中获得知识,并让学生有竞争意识。学院设立数学建模暑期培训,主要涉及有建模所需数学知识讲解、建模案例分析、建模案例练习、全国大学生优秀作品分析、最终的建模考试检测。

(3)基于理论方法和具体实战的培训。理论课方面,主要介绍数学建模基本思想、常用建模方法,以及较为经典的建模案例。在教学方法上,教师可以采用启发式教学,引领学生参与建模的全过程,使学生领悟数学建模的精髓,激发对数学建模的兴趣。实验课方面,为提高学生分析解决问题、设计实现算法的能力,介绍主要软件(Matlab、SPSS、R和Python)及其软件包,教学生直接利用软件编程求解一些简单的数学模型。实验课中,教师给出建模案例,让学生练习,包括(分析问题、提出假设、建立模型、算法设计、实验操作、结果检验、撰写论文),最后带领学生参加全国大学生数学建模竞赛。英语基础比较好的学生可以参加美国大学生数学建模竞赛。

四、结束语

创新人才的培养是时代发展的需要,是时代对教育提出的新要求。数学建模竞赛对大学生的实践创新能力十分有效,因此学校改变传统数学方式的局限性,要结合最新的科学前沿问题,通过课堂数学教学、课外活动将数学建模融入学生的认知当中,通过数学建模思想的培养,提高当代大学生的创造性思维能力,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力以及交流与合作的能力。

参考文献:

[1]杨艳琦.基于数学建模培训大学生创新能力[J].产业与科技论坛,20xx

[2]陈六新,张伟.基于数学模型的大学生创新能力的培养[J].重庆邮电大学学报,20xx

[3]张引娣,薛宏智,王阿霞.利用数学建模提高大学生的创新能力和综合素质[J].高等建筑教育,20xx

[4]姜启源,谢金星.数学模型(第三版)[M].北京:高等教育出版社,20xx

[5]王金山,胡贵安,邱国新.将数学建模思想融入大学数学教学全面提升教学质量[J].大学数学,20xx

[6]秦立春,何友萍.高职院校数学建模培训现状及对策[J].柳州师专学报,20xx

高一数学建模报告范文 第38篇

1.有利于培养学生综合解决问题的能力

2.有利于促进高职数学课程的改革

大多数学校的高职数学课还是采用教师在上面讲,学生在下面听的方法,殊不知对于高职生而言,他们不但听不懂,而且也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,老师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

高一数学建模报告范文 第39篇

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

高一数学建模报告范文 第40篇

(1)层次分析法 Excel 算法以广泛使用的办公软件 Excel 作为运算平台,无需掌握深奥的计算机专业知识和术语,有很好的推广应用基础。

(2)层次分析法 Excel算法的所有计算结果和数据均保留最高位数的精确度,可以不在任何环节进行四舍五入,当然也可以根据需要设置小数位,从而最大限度地减少了误差。

(3)层次分析法 Excel 算法的计算步骤设计成环环相扣、步步跟踪,步骤设计完毕后,可以按需要填充或变更,其余数据和结果均可以在填充或变更判断矩阵之后立即得出,使得整个运算过程简捷、轻松。另外,相似的矩阵区和计算区可以通过复制完成,只需改动少量单元格。

(4)层次分析法 Excel 算法将一致性检验也同时计算出来,决策者和判断者可以即时知道自己的判断是否具有满意的一致性并可以随时和简单地进行调整直到符合满意一致性。

(5)如果一致性指标不能令人满意,用本方法可以比较容易地实现对判断矩阵的调整,可以实现对判断的“微调” ,使得逼近最大程度的“满意一致性”甚至“完全一致性”而又不必进行繁重运算成为可能。

高一数学建模报告范文 第41篇

摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。

关键词:数学;数学建模;经济;应用

经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。

一、数学建模

数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。

二、经济问题数学模型的建立

经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。

三、建模举例

四、结语

综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。

高一数学建模报告范文 第42篇

数学核心素养是数学课程的基本理念和总体目标的体现,可以有效地指导数学教学实践。《普通高中数学课程标准(实验)》修订稿提出了数学学科的六种核心素养,即数学抽象、直观想象、数学建模、逻辑推理、数学运算和数据分析。其中,数学建模是六大数学核心素养之一。提升数学核心素养,要求数学教师在课堂教学中强化学生的建模意识。教师在教学中通过设置数学建模活动,培养学生的建模能力。

一、数学建模的含义

数学建模是将实际问题中的因素进行简化,抽象变成数学中的参数和变量,运用数学理论进行求解和验证,并确定最终是否能够用于解决问题的多次循环。数学建模能力包括转化能力、数学知识应用能力、创造力和沟通与合作能力。

二、数学建模能力的培养与强化

1.精心设计导学案,引导学生通过自主探究进行建模

在新授课前,教师设计前置性学习导学案,为学生扫除知识性和方向性的障碍。通过导学案,引导学生去探究问题的关键,对模型的构建先有一个初步的自主学习过程。通过自主学习探究,让学生充分暴露问题,提高模型教学的针对性。在前置性学习导学案设计的问题的启发与引导下,学生会逐步学习、研究和应用数学模型,形成解决问题的新方法,强化建模意识和参与实践的意识。例如,教师在引导学生构建关于测量类模型时,设计的导学案应提醒学生对测量物体进行抽象化理解,并掌握基本常识。教师应鼓励学生采用多种不同的测量方式,分析并优化所得数据。通过引导学生自主探究,让学生探索并归纳不同条件下的模型建立的方法,培养学生的建模维能力。

2.在教学环节中融入数学模型教学

教师在教学的各个环节都可以融入数学模型教学。例如,教师在新课教学时,应注意渗透数学建模思想,让学生将新授课中的数学知识点与实际生活相联系,将实际生活中与数学相关的案例引入课堂教学,引导学生将案例内化为数学应用模型,以此激发学生对数学学习的兴趣。在不同教学环节,教师通过联系现实生活中熟悉的事例,将教材上的内容生动地展示给学生,从而强化学生运用数学模型解决实际问题的能力。

教师通过描述数学问题产生的背景,以问题背景为导向,开展新授课的学习。教师在复习课教学环节,注重提炼和总结解题模型,培养学生的转换能力,让学生多方位认识和运用数学模型。相对而言,高中阶段的数学问题更加注重知识的综合考查,对思维的灵活性要求较高。高中阶段考查的数学知识、解题方法以及数学思想基本不变,设置的题目形式相对稳定。因此,教师应适当引导,合理启发,对答题思路进行分析,逐步系统地构建重点题型的解题模型。

3.结合教学实验,开展数学建模活动

教师在开展数学建模活动时,应结合教学实验。开展活动课和实践课,可以促使学生进行合作学习。教师要适时进行数学实验教学,可以每周布置一个教学实验课例,让学生主动地从数学建模的角度解决问题。在教学实验中,以小组合作的形式,让学生写出实验报告。教师让学生在课堂上进行小组交流,并对各组的交流进行总结。教学实验可以促使学生在探索中增强数学建模意识,提升数学核心素养。

4.在数学建模教学中,注重相关学科的联系

教师在数学建模教学中,应注重选用数学与化学、物理、生物等科目相结合的跨学科问题进行教学。教师可以从这些科目中选择相关的应用题,引导学生通过数学建模,应用数学工具,解决其他学科的难题。例如,有些学生以为学好生物是与数学没有关系的,因为高中生物学科是以描述性的语言为主的。这些学生缺乏理科思维,尚未树立理科意识。例如,学生可以用数学上的概率的相加和相乘原理来解决生物上的一些遗传病概率的计算问题,也可以用数学上的排列与组合分析生物上的减数分裂过程和配子的基因组成问题。又如,在学习正弦函数时,教师可以引导学生运用模型函数,写出在物理学科中学到的交流图像的数学表达式。这就需要教师在课堂教学中引导学生进行数学建模。因此,教师在数学建模教学中,应注意与其他学科的联系。通过数学建模,帮助学生理解其他学科知识,强化学生的学习能力。注重数学与其他学科的联系,是培养学生建模意识的重要途径。

总之,教师在数学教学过程中,应以学生为本,精心设计导学案,鼓励学生自主探究和应用数学模型。通过建模教学,让学生形成数学问题和实际问题相互转化的数学应用意识和建模意识。教师通过强化数学建模意识,让学生掌握数学模型应用的方法,可以使学生奠定坚实的数学基础,提升数学核心素养。

参考文献:

[1]郑兰,肖文平.基于问题驱动的数学建模教学理念的探索与时间[J].武汉船舶职業技术学院学报,20xx(4).

[2]王国君.高中数学建模教学[J].教育科学(引文版),20xx(8).

[3]李明振,齐建华.中学数学教师数学建模能力的培养[J].河南教育学院学报(自然科学版),20xx(2).

高一数学建模报告范文 第43篇

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力。

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者。

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力。

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力。一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标。数学建模与数学实验课程通过实际问题——方法与分析——范例——软件——实验——综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法。

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法。通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养。实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用。

高一数学建模报告范文 第44篇

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法。

用数学语言进行交流和良好的符号意识是重要的数学素质。数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的。能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式。数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征。

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型。通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决。

高一数学建模报告范文 第45篇

层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。

用AHP分析问题大体要经过以下七个步骤:

(1)建立层次结构模型;

首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。对于决策问题,通常可以将其划分成层次结构模型,如图1所示。

其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。

中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。

最低层:表示解决问题的措施或政策(即方案)。

(2)构造判断矩阵;

设有某层有n个元素,X={Xx1,x2,x3……xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序。上述比较是两两因素之间进行的比较,比较时取1~9尺度。

用 表示第i个因素相对于第j个因素的比较结果,则

A则称为成对比较矩阵

比较尺度:(1~9尺度的含义)

如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。

倒数:若j因素和i因素比较,得到的判断值为

(3)用和积法或方根法等求得特征向量 W(向量 W 的分量 Wi 即为层次单排序)并计算最大特征根λmax;

(4)计算一致性指标 CI、RI、CR 并判断是否具有满意的一致性。其中RI是

平均随机一致性指标 RI 的数值:

矩阵阶数34567891011

CR=CI/RI,一般地当一致性比率CR<时,认为A的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对A加以调整。

(5)层次总排序,如表1所示。

(6)层次总排序一致性检验,如前所述。

(7)根据需要进行调整 对于层次单排序结果和层次总排序结果,只要符合满意一致性即随机一致性比例 CR≤ 就可以结束计算并认同排序结果,否则就要返回调整不符合一致性的判断矩阵。

221381
领取福利

微信扫码领取福利

高一数学建模报告范文(实用45篇)

微信扫码分享